§ 25.107 - (b) No takeoff made to determine the data required by this section may require exceptional piloting skill or alertness. - (c) The takeoff data must be based on— - (1) In the case of land planes and amphibians: - (i) Smooth, dry and wet, hard-surfaced runways; and - (ii) At the option of the applicant, grooved or porous friction course wet, hard-surfaced runways. - (2) Smooth water, in the case of seaplanes and amphibians; and - (3) Smooth, dry snow, in the case of skiplanes. - (d) The takeoff data must include, within the established operational limits of the airplane, the following operational correction factors: - (1) Not more than 50 percent of nominal wind components along the takeoff path opposite to the direction of takeoff, and not less than 150 percent of nominal wind components along the takeoff path in the direction of takeoff. - (2) Effective runway gradients. [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as amended by Amdt. 25–92, 63 FR 8318, Feb. 18, 1998] ## §25.107 Takeoff speeds. - (a) V_1 must be established in relation to $V_{\it EF}$ as follows: - (1) V_{EF} is the calibrated airspeed at which the critical engine is assumed to fail. V_{EF} must be selected by the applicant, but may not be less than V_{MCG} determined under §25.149(e). - (2) V_1 , in terms of calibrated airspeed, is selected by the applicant; however, V_1 may not be less than V_{EF} plus the speed gained with critical engine inoperative during the time interval between the instant at which the critical engine is failed, and the instant at which the pilot recognizes and reacts to the engine failure, as indicated by the pilot's initiation of the first action (e.g., applying brakes, reducing thrust, deploying speed brakes) to stop the airplane during accelerate-stop tests. - (b) V_{2MIN} , in terms of calibrated airspeed, may not be less than— - (1) 1.2 V_S for— - (i) Two-engine and three-engine turbopropeller and reciprocating engine powered airplanes; and - (ii) Turbojet powered airplanes without provisions for obtaining a significant reduction in the one-engine-inoperative power-on stalling speed; - (2) 1.15 V_S for— - (i) Turbopropeller and reciprocating engine powered airplanes with more than three engines; and - (ii) Turbojet powered airplanes with provisions for obtaining a significant reduction in the one-engine-inoperative power-on stalling speed; and - (3) 1.10 times V_{MC} established under § 25.149. - (c) V_2 , in terms of calibrated airspeed, must be selected by the applicant to provide at least the gradient of climb required by §25.121(b) but may not be less than— - (1) V_{2MIN} , and - (2) V_R plus the speed increment attained (in accordance with §25.111(c)(2)) before reaching a height of 35 feet above the takeoff surface. - (d) V_{MU} is the calibrated airspeed at and above which the airplane can safely lift off the ground, and continue the takeoff. V_{MU} speeds must be selected by the applicant throughout the range of thrust-to-weight ratios to be certificated. These speeds may be established from free air data if these data are verified by ground takeoff tests. - (e) V_R , in terms of calibrated airspeed, must be selected in accordance with the conditions of paragraphs (e)(1) through (4) of this section: - (1) V_R may not be less than— - (i) V_1 : - (ii) 105 percent of V_{MC} ; - (iii) The speed (determined in accordance with $\S25.111(c)(2)$) that allows reaching V_2 before reaching a height of 35 feet above the takeoff surface; or - (iv) A speed that, if the airplane is rotated at its maximum practicable rate, will result in a ${\rm V}_{LOF}$ of not less than 110 percent of ${\rm V}_{MU}$ in the all-engines-operating condition and not less than 105 percent of ${\rm V}_{MU}$ determined at the thrust-to-weight ratio corresponding to the one-engine-inoperative condition. - (2) For any given set of conditions (such as weight, configuration, and temperature), a single value of V_R , obtained in accordance with this paragraph, must be used to show compliance with both the one-engine-inoperative and the all-engines-operating takeoff provisions. - (3) It must be shown that the one-engine-inoperative takeoff distance, using a rotation speed of 5 knots less than V_R established in accordance with paragraphs (e)(1) and (2) of this section, does not exceed the corresponding one-engine-inoperative takeoff distance using the established V_R . The takeoff distances must be determined in accordance with §25.113(a)(1). - (4) Reasonably expected variations in service from the established takeoff procedures for the operation of the airplane (such as over-rotation of the airplane and out-of-trim conditions) may not result in unsafe flight characteristics or in marked increases in the scheduled takeoff distances established in accordance with §25.113(a). - (f) V_{LOF} is the calibrated airspeed at which the airplane first becomes airborne. [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as amended by Amdt. 25–38, 41 FR 55466, Dec. 20, 1976; Amdt. 25–42, 43 FR 2320, Jan. 16, 1978; Amdt. 25–92, 63 FR 8318, Feb. 18, 1998; Amdt. 25–94, 63 FR 8848, Feb. 23, 1998] ## § 25.109 Accelerate-stop distance. - (a) The accelerate-stop distance on a dry runway is the greater of the following distances: - (1) The sum of the distances necessary to— $\,$ - (i) Accelerate the airplane from a standing start with all engines operating to V_{EF} for takeoff from a dry runway: - (ii) Allow the airplane to accelerate from V_{EF} to the highest speed reached during the rejected takeoff, assuming the critical engine fails at V_{EF} and the pilot takes the first action to reject the takeoff at the V_{I} for takeoff from a dry runway: and - (iii) Come to a full stop on a dry runway from the speed reached as prescribed in paragraph (a)(1)(ii) of this section; plus - (iv) A distance equivalent to 2 seconds at the V_1 for takeoff from a dry runway. - (2) The sum of the distances necessary to— - (i) Accelerate the airplane from a standing start with all engines operating to the highest speed reached during the rejected takeoff, assuming the pilot takes the first action to reject the takeoff at the V_1 for takeoff from a dry runway; and - (ii) With all engines still operating, come to a full stop on dry runway from the speed reached as prescribed in paragraph (a)(2)(i) of this section; plus - (iii) A distance equivalent to 2 seconds at the V_1 for takeoff from a dry runway. - (b) The accelerate-stop distance on a wet runway is the greater of the following distances: - (1) The accelerate-stop distance on a dry runway determined in accordance with paragraph (a) of this section; or - (2) The accelerate-stop distance determined in accordance with paragraph (a) of this section, except that the runway is wet and the corresponding wet runway values of $V_{\rm EF}$ and $V_{\rm 1}$ are used. In determining the wet runway accelerate-stop distance, the stopping force from the wheel brakes may never exceed: - (i) The wheel brakes stopping force determined in meeting the requirements of §25.101(i) and paragraph (a) of this section; and - (ii) The force resulting from the wet runway braking coefficient of friction determined in accordance with paragraphs (c) or (d) of this section, as applicable, taking into account the distribution of the normal load between braked and unbraked wheels at the most adverse center-of-gravity position approved for takeoff. - (c) The wet runway braking coefficient of friction for a smooth wet runway is defined as a curve of friction coefficient versus ground speed and must be computed as follows: - (1) The maximum tire-to-ground wet runway braking coefficient of friction is defined as: